Long-Term Experiences with Fertilizers on Wheat and Maize Crops in the Pedoclimatic Conditions of the Bârlad Plateau

Bianca-Mihaela Chiper (Petrea)¹, Mădălina Olaru^{1*}, Crina-Loredana Turcu (Leonte)¹, Roxana-Patricia Ionașcu¹, Benone Băeșu¹, Ioan Sebastian Brumă², Costică Ailincăi³

¹Research-Development Station for Combating Soil Erosion "Mircea Moţoc" Perieni, Vaslui County, Romania
²Rural Development Research Platform, Leţcani, Iaşi County, Romania
³University of Agricultural Sciences and Veterinary Medicine, Iaşi, Iaşi County, Romania

*Corresponding author. E-mail: madalinaolaru54@gmail.com

ABSTRACT

A large number of long-term field experiments demonstrate that optimal application of nitrogen fertilizers to crops did not result in loss of organic matter, nor did it adversely affect soil microbial activity. Optimal use of fertilizers on agricultural crops reduces soil erosion, but repeated application of high doses of nitrogen fertilizer can lead to soil acidification, a negative trait of soil health. The main objective of this paper is to study the particular effect, interaction and complementarity of NP, NPK and organo-mineral fertilizers on the production of agricultural crops. This paper presents production data as well as references that can be used to define the scientific bases of the multi-year application of fertilizers. The experimental technique is specific to the polyfactorial character and the analytical methods used are specific and current in the field.

In this scientific paper, we present the results obtained for the cultivation of wheat and corn, during the period 2018-2023, at the "Mircea Moţoc" Perieni Research-Development Station for Combating Soil Erosion, by fertilizing with several types of organo-mineral fertilizers. The results obtained come from the long-term experiences with fertilizers with 25 variants in the NP experience, respectively 16 variants in the NPK experience and the organo-mineral experience, all being placed according to the block method with parcels subdivided into 6 repetitions. The obtained results were interpreted by analysis of variance. From the results of this long-term experience, it is concluded that the effect of long-term fertilization with NP, NPK and organo-minerals responds to the maximization of profit and the optimization of the soil-plant system and environmental protection.

Keywords: long-term fertilization, erosion, production, organic and mineral fertilizers.

INTRODUCTION

S oil is fundamental to crop production and is a natural resource that provides people with most of their food (Jităreanu et al., 2007; Ailincăi et al., 2011).

However, it is finite and fragile and requires special care and preservation so that it can be used indefinitely by future generations.

Doran and Parkin (1994) defined soil quality or health as its ability to function within ecosystem and land-use boundaries, support biological productivity, maintain environmental quality, and promote plant and animal health.

The concept of integrated mineral fertilizer and organic manure management became the mainstay of soil fertility management practices in the early 20th century as it strives to maintain/improve soil fertility and health for sustained crop productivity long-term.

Nitrogen is one of the most important essential nutrients for plants and is required by them in relatively large amounts (Alcoz et al., 1993; Barraclough et al., 2010).

Successful nitrogen management can optimize crop yields, improve profitability and minimize nitrogen losses.

Long-term agronomic experiments involving fertilizer application in different agro-ecological zones around the world can be used to generate information along these lines. In an attempt to reduce the cost of cultivation and maintain and/or improve soil health, conservation farming systems are being adopted in many parts of the world

Received 30 November 2023; accepted 15 April 2024.

(Cociu, 2012). In these systems, the soil is minimally tilled and crop residues are retained in the soil to help build up organic matter, therefore the soil quality parameters are improved (Petcu et al., 2022; Burtan et al., 2023). It is necessary to establish appropriate fertilizer management strategies in such systems so that soil health is maintained or improved.

"Long-term experiences with fertilizers" took off in 1966-1967 at the initiative of acad. Cristian Hera who, in collaboration with Z. Borlan and a group of researchers, designed and placed a unique set of longterm experiences with fertilizers.

The long-term experiences with fertilizers, at SCDCES "Mircea Moţoc" Perieni, are structured and have the same objectives as the other long-term experiences in Romania, their specificity being determined by the conditions of the sloping lands subject to degradation through erosion.

The future challenge is to manage fertilizers and soil so that not only food demands are continuously met, but also that the soil remains healthy to support adequate food production with minimal environmental impact (Bucur et al., 2011; Cârlan et al., 1994).

The purpose of this work is, in addition to obtaining competitive productions, and the need to conserve the soil, that is why all the measures that lead to the reduction of the phenomenon of erosion below the admissible limits and the improvement of their fertility are used in the complex.

MATERIAL AND METHODS

Location of the research area

The long-term experiences with fertilizers and those regarding the rotation of crops and fertilizers on the production and fertility of the soil, are carried out in the perimeter of the Research and Development Station for Combating Soil Erosion "Mircea Moţoc" Perieni. Perieni Commune is located in the Tutovei Hills within the Bârladului Plateau, Vaslui County, Romania.

The experiments were located on the left and right slopes of Valea Țărnii (latitude - $46^{\circ}18$ " and longitude - $27^{\circ}37$ ") at the altitude of 223 m, on a typical cambic chernozem, with a loamy-clay texture, with a slope of 12-13%, the exposure of the slope east, affected by moderate erosion.

Climatic aspects

The values of the meteorological elements (temperatures, precipitation) indicate the presence of a temperate-continental climate of excessive nuance, with hot, dry summers and cold winters. The data used were recorded both at the Bârlad and Perieni weather stations.

Rainfall

More than 47% of the annual volume of precipitation falls in the critical season of erosion, which explains the high values that erosion registers in the Bârlad Plateau. Also, about 18% of the annual volume of precipitation occurs when the soil is bare, freshly tilled and easily erodible. The analysis of the annual amounts of rain recorded between 1941-2023 reveals a cvclical tendency of about 40 years, in which the rainy interval alternates with the dry one, the multiannual average being 487.5 mm. Starting from 1985, the drought phenomenon was reinstated, tending to continue even today (Figure 1).

Temperature

The average annual temperature varies between 8.0°C and 13.0°C. Analysis of monthly values from 1941-2023 reveals a multi-year average of 10.1°C (Figure 2).

Bianca-Mihaela Chiper (Petrea) et al.: Long-Term Experiences with Fertilizers on Wheat and Maize Crops in the Pedoclimatic Conditions of the Bârlad Plateau

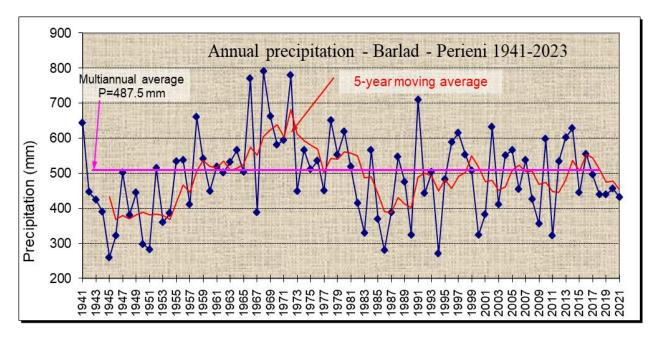


Figure 1. Distribution of multiannual average precipitation in the period 1941-2023

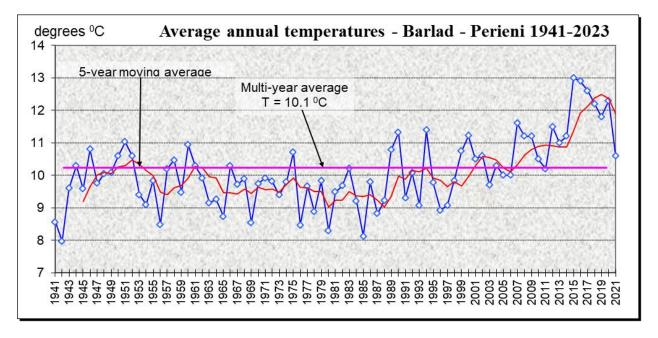


Figure 2. Distribution of multiannual mean temperatures in the period 1941-2023

The experiences have a stationary character and were executed in the rotation: wheat - corn. The polyfactorial experiment placed in the field was carried out according to the method of two-factor storied blocks, of the 6x5 type in the NP experiment, respectively 6x4 in the NPK experiment and in the NPG experiment, in six repetitions. 25 variants arranged according to the simple grid method, in six repetitions, were studied. The size of one variant is $12 \text{ m} \times 4 \text{ m}$.

Fertilizers were applied in autumn under plowing and in the spring in vegetation to wheat and to the preparation of the germinal bed to corn. Chemical fertilizers were administered annually to both crops. Manure was incorporated into the soil under basic plowing once every 5 years. Manure was used both alone and in combination with mineral fertilizers (NP), compared to mineral fertilizers used alone and unfertilized control plots. The experience with nitrogen and phosphorus doses (NP) has the following fertilization options:

Factors A and B with 5 graduations:

$A_1 - P_0;$	$B_1 - N_0;$
$A_2 - P_{40};$	$B_2 - N_{40};$
$A_3 - P_{80;}$	$B_3 - N_{80};$
$A_4 - P_{120};$	$B_4 - N_{120};$
$A_5 - P_{160;}$	$B_5 - N_{160}.$

The experiment with doses of nitrogen, phosphorus and potassium (NPK) has the following variants:

Factors A and B with 4 graduations:

$A_1 - N_0 P_0;$	$B_1 - K_0;$
$A_2 - N_{100}P_0;$	$B_2 - K_{50};$
$A_3 - N_0 P_{100};$	$B_3 - K_{100};$
$A_4 - N_{100}P_{100};$	$B_4 - K_{150}$.

The experiment with doses of nitrogen, phosphorus and manure (NPG) has the following variants:

Factors A and B with 4 graduations:

$A_1 - N_0 P_0;$	$B_1 - G_0;$
$A_2 - N_0 P_{50};$	$B_2 - G_{20};$
$A_3 - N_{50}N_{50};$	$B_3 - G_{40};$
$A_4 - N_{100} P_{100};$	$B_4 - G_{60}.$

RESULTS AND DISCUSSION

The present study follows the evolution over time of wheat and corn production in the period 2018-2023 at SCDCES "Mircea Moţoc" Perieni in the long-term experiences with fertilizers.

Long-term effect of NP (nitrogenphosphorus) fertilization on wheat crop The superiority of wheat production achieved by using nitrogen is natural, considering that nitrogen represents the "pivot of fertilization", the decisive factor in increasing wheat yields, and phosphorus has a smaller effect (Năstasă et al., 2000; Năstasă and Filiche, 2002).

Agro-fund A	Agro-fund b	2019	2020	2021	2022	2023	Media	%
A1(P0)	b1(N0)	2366	1260	2968	942	3062	2120	100
	b2(N40)	3238	1565	2679	1241	3269	2399	113
	b3(N80)	3777	1537	3282	1324	3463	2677	126
	b4(N120)	3504	1403	3035	1348	3339	2526	119
	b5(N160)	3536	1380	3596	1256	3223	2598	123
	b1(N0)	2468	1254	3790	1014	2571	2219	105
	b2(N40)	2842	1523	3608	1335	3471	2556	121
A2(P40)	b3(N80)	4107	1459	3347	1583	3374	2774	131
	b4(N120)	4369	1459	3079	1557	3541	2801	132
	b5(N160)	4319	1383	3433	1663	3275	2815	133
	b1(N0)	2745	1408	3799	1154	2905	2402	113
	b2(N40)	4140	1521	2835	1465	3939	2780	131
A3(P80)	b3(N80)	4394	1755	2952	1747	3584	2886	136
	b4(N120)	4124	1480	3059	1448	3144	2651	125
	b5(N160)	4859	1380	2983	1541	3302	2813	133
	b1(N0)	3558	1377	3027	1004	2755	2344	111
	b2(N40)	3411	1726	3325	1485	3701	2730	129
A4(P120)	b3(N80)	3784	1674	3391	1843	3574	2853	135
	b4(N120)	4875	1505	3366	1632	3337	2943	139
	b5(N160)	4265	1433	2730	1681	3319	2686	127
	b1(N0)	2615	1271	3239	1174	3675	2395	113
	b2(N40)	3232	1595	2933	1669	3914	2668	126
A5(P160)	b3(N80)	3967	1469	2710	1699	3269	2623	124
	b4(N120)	4325	1407	3197	1561	3593	2817	133
	b5(N160)	4412	1298	2977	1492	3462	2728	129

Tabel 1. Wheat production medium centralizer - NP fertilization - years 2019-2023

In the case of the cultivation of wheat after corn, the priority role of nitrogen is significantly recorded, with production increases of 600-700 kg/ha, so with levels of

production and differences predominantly higher than those due to phosphorus, but it is also obvious the complementary contribution of phosphorus which supports the efficiency of the N doses applied, even progressively with a better utilization of it in accordance with the applied doses. The production differences due to the increase in N doses (0-160 kg) are 300-400 kg/ha and with the increase in P doses (0-160 kg) the production differences are 600-700 kg/ha (Table 1).

Long-term effect of NP (nitrogenphosphorus) fertilization on maize crop

Maize is one of the most important crops worldwide and in Romania it holds a top position among cultivated cereals (Năstasă et al., 1999). Usually if we analyze the surface of total cultivated cereals in Romania, maize area overcomes 50% (Dragomir et al., 2022).

In the context of the influence of years, the yield differences due to nitrogen application are unanimously superior, having the highest statistical significance, with a wide range of yield differences from 350-573 kg grains/ha.

Therefore, nitrogen, as in other crops, is the determining element of production and the pivot of fertilization (Neamţu, 1985). And in the case of increases due to the application of N, they tend to decrease with the increase of the applied dose (Popa et al., 1984).

In the corn crop, in 2022, production was affected by the low volume of precipitation, registering only 295.4 mm/year.

The reciprocity of nitrogen-phosphorus interaction works in achieving the productive effects of fertilization with superior statistical significance essentially due to nitrogen doses over those of phosphorus, obviously understanding that a higher level of phosphorus coverage significantly potentiates the effect of applying nitrogen doses (Constantinescu et al., 2023). It is clearly highlighted that the increase and continuity of phosphate fertilization, in soils initially deficient in P, as the supply of this element improves, supports and increases the level of corn production, ensures the effect of potentiating the results of nitrogen fertilization (Table 2).

Agro-fund A	Agro-fund b	2018	2019	2020	2021	2023	Average	%
	b1(N0)	1596	3137	2262	7014	2165	3235	100
	b2(N40)	1701	4001	2716	7110	1931	3492	108
A1(P0)	b3(N80)	1945	4089	2897	7448	2662	3808	118
	b4(N120)	1928	4251	2897	7587	1895	3712	115
	b5(N160)	1902	4130	2811	7434	2473	3750	116
	b1(N0)	1859	3130	2572	6437	1878	3175	98
	b2(N40)	1704	3896	2641	7606	1348	3439	106
A2(P40)	b3(N80)	1913	4335	2912	7269	1645	3615	112
	b4(N120)	2050	4332	2994	7489	1639	3701	114
	b5(N160)	2055	4360	3052	7642	1829	3788	117
	b1(N0)	1404	3030	2102	6598	2353	3097	96
	b2(N40)	1937	4106	2928	7359	2180	3702	114
A3(P80)	b3(N80)	1942	4354	2989	6971	2314	3714	115
	b4(N120)	1910	4399	3019	6852	2368	3710	115
	b5(N160)	1915	4217	2923	6820	2369	3649	113
	b1(N0)	1571	2961	2202	6217	2260	3042	94
	b2(N40)	1596	3321	2425	6400	2088	3166	98
A4(P120)	b3(N80)	1836	4214	2781	6935	1866	3526	109
	b4(N120)	1911	4318	2932	7071	2206	3687	114
	b5(N160)	1783	3986	2765	7003	2327	3573	110
	b1(N0)	1512	3222	2309	6910	2050	3200	99
	b2(N40)	1573	3149	2353	6894	2017	3197	99
A5(P160)	b3(N80)	1775	4188	2793	6546	2033	3467	107
	b4(N120)	1808	4075	2803	6902	2233	3564	110
	b5(N160)	1796	4183	2811	6493	1744	3405	105

Table 2. Centralizer average corn production - NP fertilization - years 2018-2023

The increase in production obtained compared to the non-fertilized control, 2943 kg/ha (139%), demonstrates the significant effect of nitrogen and phosphorus fertilization on wheat production (2019-2023).

The productions achieved in the corn culture, compared to the level of the experimental control, represent 99-118% of its level with almost minimal increases, in many situations of fertilization the differences have minimal significance (Figure 3).

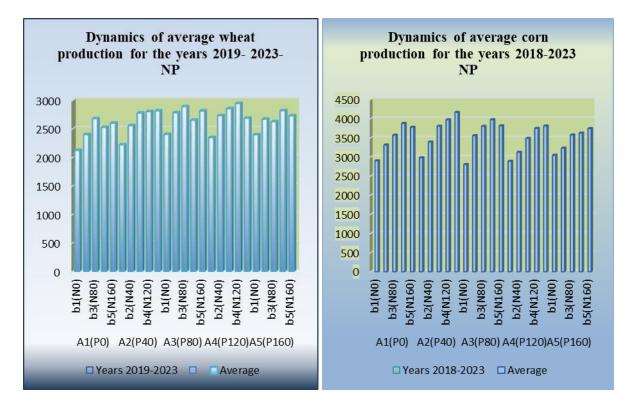


Figure 3. Production dynamics of wheat (2019-2023) and corn (2018-2023) NP fertilization

Long-term effect of NPK (nitrogenphosphorus-potassium) fertilization on wheat crop

Merca et al. (2021) states that most crops have, in the context of NPK, the highest specific consumptions of K, more than N and much more than P, with the exception of legumes and some fodder crops and grasses from the spontaneous flora where N consumption prevails.

Grain cereals respond to the basic application (NPK) of the presence and potassium, with balanced growth, healthy plants, resistant to breakage and good quality (including ripening). They have consumption equal to that of N and higher than P (Merca et al., 2021). Applied together, nitrogen and phosphorus through the effect of complementarity and mutual support, phosphorus potentiating the action of nitrogen, increases in the productions obtained are noted, but at increased doses, a slight reduction is noted (Nistor and Nistor, 1979).

In the long-term experience with NPK fertilization, the 2023 wheat crop was a disaster and the processed data are from the years 2018-2022.

According to the data in Table 3, the difference in production recorded for the variant fertilized with N100P100K150 is very significant, being 53% higher than the non-fertilized variant.

Bianca-Mihaela Chiper (Petrea) et al.: Long-Term Experiences with Fertilizers on Wheat and Maize Crops in the Pedoclimatic Conditions of the Bârlad Plateau

Agro-fund A	Agro-fund b	2018	2019	2020	2021	2022	Average	%
	b1(K0)	853	2057	1141	3556	1110	1743	100
A 1 (NIODO)	b2(K50)	891	2043	1258	3591	1021	1761	101
A1(N0P0)	b3(K100)	929	2034	1118	3506	1083	1734	99
	b4(K150)	862	2024	1211	3537	1286	1784	102
	b1(K0)	1205	1963	1484	3114	1515	1856	108
A 2(NI100D0)	b2(K50)	1354	1933	1609	3359	1460	1943	111
A2(N100P0)	b3(K100)	1319	2800	1592	3202	1479	2078	119
	b4(K150)	1293	2261	1813	3231	1435	2007	115
	b1(K0)	973	3661	1277	3996	1143	2210	127
$\Lambda 2(NOD100)$	b2(K50)	902	3448	1459	3854	1212	2175	125
A3(N0P100)	b3(K100)	954	3844	1246	3527	1221	2158	124
	b4(K150)	939	4019	1399	4029	1137	2305	132
	b1(K0)	1329	4418	2073	3269	2055	2629	152
A 4/N100D100	b2(K50)	1414	4316	2034	3380	2032	2635	151
A4(N100P100)	b3(K100)	1436	3252	1997	3070	1965	2344	134
	b4(K150)	1358	4319	1856	3388	2382	2660	153

Table 3. Wheat production medium centralizer - NPK fertilization - years 2018-2022

The long-term effect of NPK (nitrogenphosphorus-potassium) fertilization on maize crop

Maize is a crop with efficiency in the application of NPK (basic) and with support for the phase application (including localized) of some varieties with N and complexes in whose efficiency the presence of potassium is essential (Merca et al., 2021).

In the corn crop, in 2022, production was affected by the low volume of precipitation, registering only 295.4 mm/year.

Potassium applied to the corn crop influences yield differences that increase with increasing doses. According to the data in table 4, regarding the doses of potassium, on the effect of nitrogen and phosphorus on grain production in the corn crop, only by applying N100P100K150 was there a yield difference of 651 kg, statistically assured as very significantly superior followed by N100P100K100 (614 kg) and N100P0K100 (606 kg) both with significantly higher statistical assurance (Table 4).

Agro-fund A	Agro-fund b	2018	2019	2020	2021	2023	Average	%
	b1(K0)	1390	1196	1174	2909	1522	1638	100
A 1/NODO)	b2(K50)	1532	909	1191	3179	1560	1674	102
A1(N0P0)	b3(K100)	1599	1105	1313	3069	1546	1726	105
	b4(K150)	1208	987	1056	2729	1312	1458	89
	b1(K0)	1340	2448	1611	3897	1447	2149	131
A2(N100P0)	b2(K50)	1382	2357	1559	4048	1384	2146	131
A2(N100P0)	b3(K100)	1512	2454	1677	4100	1480	2244	137
	b4(K150)	1393	2564	1642	3751	1531	2176	133
	b1(K0)	1738	1160	1296	3848	1522	1913	117
$A_2(NOD100)$	b2(K50)	1622	1121	1268	3220	1410	1728	105
A3(N0P100)	b3(K100)	1981	1143	1329	3254	1638	1869	114
	b4(K150)	1510	1218	1231	3532	1518	1802	110
	b1(K0)	1763	2164	1617	3884	1564	2199	134
A 4/NI100D100)	b2(K50)	1560	2057	1464	3385	1451	1983	121
A4(N100P100)	b3(K100)	1789	2271	1628	3833	1738	2252	137
	b4(K150)	1910	2212	1704	3867	1755	2289	140

Table 4. Centralizer average corn production - NPK fertilization - years 2018-2023

The highest production increases, in the wheat crop, due to the influence of potassium on the effect of nitrogen and phosphorus kg/ha doses. were 53% (2660)at N100P100K150) higher than the variants to which potassium was not applied. Compared to the variants not fertilized with potassium, the production differences were statistically significantly higher when applying K150/N0P0 and distinctly higher when applying N80P40 and N160P80 doses.

The influence of the doses of potassium on the effects of those of nitrogen and phosphorus was less, statistically ensured production differences being recorded when applying the doses of N100P100K50 of 892 kg/ha significantly higher and N100P100K150 of 917 kg/ha distinctly significantly higher than the unfertilized control.

At the maize crop, the influence of potassium determined the achievement of very significantly higher production differences than the control by applying N100P100K100 (Figure 4).

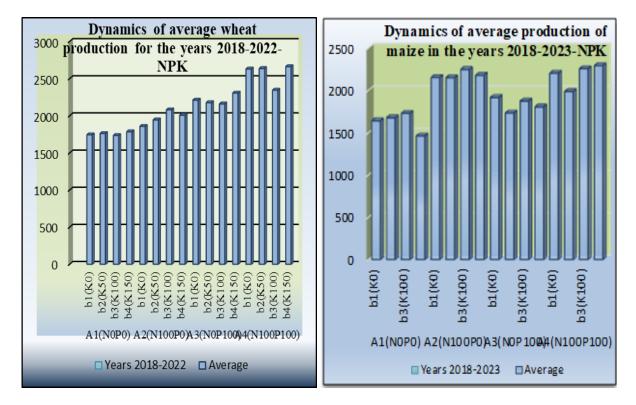


Figure 4. Dynamics of wheat and corn production for the years 2018-2023 - fertilization with NPK

The long-term effect of NPG (nitrogenphosphorus-manure) fertilization on wheat crop

The effect of manure fertilization is maintained for up to 3-5 years and through its slow action, a significant amount of nutrients needed during the entire vegetation period is ensured (Bilsborrow et al., 2013). The application of manure simultaneously with mineral fertilizers ensures both the immediate needs of nutrients in the soil and the needs in the longer term (Motoc, 1975).

In the long-term experience with NPG fertilization, the wheat crop of 2023 was calamity and the data processed are from the years 2018-2022.

Bianca-Mihaela Chiper (Petrea) et al.: Long-Term Experiences with Fertilizers on Wheat and Maize Crops in the Pedoclimatic Conditions of the Bârlad Plateau

Agro-fund A	Agro-fund b	2018	2019	2020	2021	2022	Average	%
	b1(G0)	1406	1922	1292	2979	2539	2028	100
	b2(G20)	1484	1870	1323	3828	3350	2371	117
A1(N0P0)	b3(G40)	1507	1957	1503	3803	3193	2393	118
	b4(G60)	1779	2119	1563	3743	3504	2542	125
	b1(G0)	1428	1928	1388	3817	3110	2334	115
A 2(NOD50)	b2(G20)	1588	1795	1328	3968	3130	2362	116
A2(N0P50)	b3(G40)	1785	2449	1404	4229	3219	2617	129
	b4(G60)	1706	1969	1342	4343	3452	2562	126
	b1(G0)	2390	3143	1432	4277	3393	2927	144
A 2(NEODEO)	b2(G20)	2602	3174	1424	4215	3293	2942	145
A3(N50P50)	b3(G40)	2591	3332	1507	3849	2989	2853	141
	b4(G60)	2581	3326	1253	3914	3065	2828	139
	b1(G0)	3393	3746	1362	4198	3680	3276	162
A 4(N1100D100)	b2(G20)	3372	3868	1250	4327	3587	3281	162
A4(N100P100)	b3 (G40)	3430	3335	1310	3974	3367	3083	152
	b4(G60)	3577	3546	1295	3889	3327	3127	154

Table 5. Average wheat production centralizer - NPG fertilization - years 2018-2022

According to the data in Table 5, in the experimental years, the production increases recorded in the wheat crop fluctuate, the most considerable increases are found in the case of the N100P100G20 variant, where a production increase of 1253 kg/ha was recorded.

The long-term effect of fertilization with organo-mineral fertilizers on maize crop

In the corn crop, in 2022, production was affected by the low volume of precipitation, registering only 295.4 mm/year.

Agro-fund A	Agro-fund b	2018	2019	2020	2021	2023	Average	%
	b1(G0)	1707	1233	1415	4579	2523	2291	100
A1(N0P0)	b2(G20)	1861	1711	1616	4461	2463	2423	106
AI(NUPU)	b3(G40)	2003	1656	1700	4144	2548	2410	105
	b4(G60)	1564	1175	1307	4407	2347	2160	94
	b1(G0)	1701	1347	1434	5057	2268	2362	103
A 2(NIOD50)	b2(G20)	1761	1279	1448	5540	2180	2442	107
A2(N0P50)	b3(G40)	1819	1234	1489	4890	1910	2268	99
	b4(G60)	1726	1248	1432	5069	2134	2322	101
	b1(G0)	2095	2070	1859	4474	2081	2516	110
A 2(NI50D50)	b2(G20)	2167	1989	1883	4304	2232	2515	110
A3(N50P50)	b3(G40)	2106	1948	1840	4194	1995	2416	105
	b4(G60)	1819	1684	1591	4333	2142	2314	101
	b1(G0)	2230	2554	2056	4833	2231	2781	121
A 4(N100D100)	b2(G20)	2050	2066	1833	4865	2296	2622	114
A4(N100P100)	b3(G40)	2162	2395	1975	4973	2121	2725	119
	b4(G60)	2229	2598	2067	5253	2183	2866	125

Table 6. Centralizer average corn production - NPG fertilization - years 2018-2023

Due to the supply of nutrients and the improvement of organic matter in the soil, following the application of manure, a decrease in the need for nitrogen fertilizers is obtained (Table 6).

ROMANIAN AGRICULTURAL RESEARCH

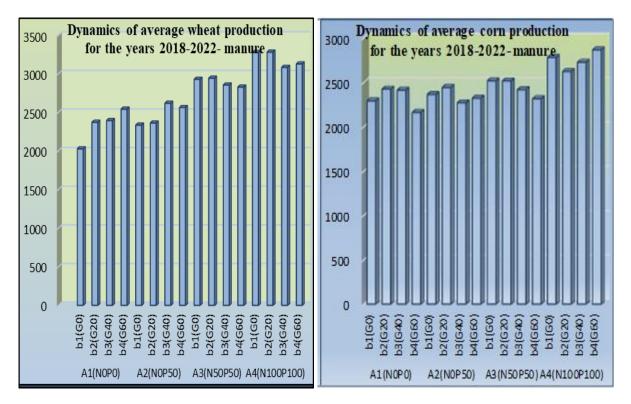


Figure 5. Dynamics of wheat and corn production for the years 2018-2023 - organic fertilization

In the five experimental years, the wheat crop obtained superior production differences compared to the unfertilized variant between 914 (N50P50G20) - 1253 (N100P100G20) kg/ha. The highest increase in production was obtained in the fertilization variant in which the dose of manure was 20 tons/ha, which is 1253 kg/ha significantly higher than the manure.

In corn, higher yields were obtained when a dose of 60 t/ha of manure was applied, and in the variants where the manure was applied in combination with mineral fertilizers, significantly higher yields were obtained with 500-600 kg/ha compared to of witness (Figure 5).

CONCLUSIONS

The results obtained highlight the fact that the combined use of both fertilizer and manure has been shown to be superior in terms of crop productivity, soil health and economic profitability.

The type and rate of fertilization have a strong influence on wheat and maize, yield components and quality characteristics of yields. However, as other authors have found, crop growth, yield and quality traits are mainly dependent on environmental conditions. In fact, significant second- and third-order interactions were found, confirming the year-to-year variations for wheat and maize production. This variability may be due to changes in the amount and distribution of precipitation over the growing seasons.

The influence of climatic conditions (temperature and precipitation) on the production of wheat and corn in years with drought in autumn or excessive amounts of precipitation in spring-summer, is manifested by large variations and limitations in the level of harvests.

Analyzing the results on the production of the two crops, from the last 5 years, it can be stated that the best productions are obtained with the N100P100G20 variants, but even so, most productions have fluctuated annually due to climate changes, the lack of precipitation during the growing season, as well as other factors.

Application of nitrogen, phosphorus and manure in wheat cultivation after maize (2-year rotation) yield increases of 900-1200 kg/ha. Regarding the evolution of soil fertility under the impact of fertilization, it is useful to focus on the "sustainability" of the conditions - that is, high productions with the maintenance of the balance of the soil-plant system and the favorable evolution of soil productivity and fertility.

These results are corroborated by previous reports of other long-term experiments where the occurrence of multi-nutrient deficiencies led to a decrease in yield over time, and the provision of different nutrients in adequate amounts helped to achieve yield stability.

study indicates Thus, our that the integrated use of organic matter and fertilizers can support higher crop productivity.

ACKNOWLEDGEMENTS

For the author Ioan Sebastian Brumă: this work was supported by the European Union's HORIZON EUROPE Programme (HORIZON-CL6- 2021-COMMUNITIES- 01) under project: Climate smart, ecosystemenhancing and knowledge-based rural expertise and training centres – This material is also based on research activities developed within the rural systems living lab RoRuralia, build within the Horizon Europe project RURALITIES, with the grant agreement No. 101060876.

REFERENCES

- Alcoz, M.M., Hons, F.M., Haby, V.A., 1993. Nitrogen Fertilization Timing Effect on Wheat Production, Nitrogen Uptake Efficiency, and Residual Soil Nitrogen. Agron. J., 85: 1198-1203.
- Ailincăi, C., Jităreanu, G., Bucur, D., Mercuş, A., 2011. Protecting the soil from erosion by cropping system and fertilization in Moldavian Plateau. International Journal of Food, Agriculture and Environment, 9(1): 570-574.
- Barraclough, P.B., Howarth, J.R., Jones, J., Lopez-Bellido, R., Parmar, S., Shepherd, C.E., Hawkesford, M.J., 2010. Nitrogen efficiency of wheat: Genotypic and environmental variation and prospects for improvement. Eur. J. Agron., 33: 1-11.
- Bilsborrow, P., Cooper, J., Tétard-Jones, C., Srednicka-Tober, D., Baranski, M., Eyre, M., Schmidt, C., Shotton, P., Volakakis, N., Cakmak,

I., 2013. The effect of organic and conventional management on the yield and quality of wheat grown in a long-term field trial. Eur. J. Agron., 51: 71-80.

- Bucur, D., Jităreanu, G., Ailincăi, C., 2011. Effects of long-term soil and crop management on the yield and on the fertility of eroded soil. International Journal of Food, Agriculture and Environment, 9(2): 207-209.
- Burtan, V., Coronado, M., Sîrbu, C., Ciornei, L., Todirică, I.C., Străteanu, A.G., Popa, M., 2023. Various soil quality parameters and humus content evaluation in conventional and minimum tillage systems, Rom. Agr. Res., 40: 491-500. https://doi.org/10.59665/rar4046
- Cârlan, C., and Cârlan, V., 1994. The effect of organomineral fertilizers on the production of wheat and corn on the eroded soils of the Bârlad Plateau. Cerc. Agron. in Moldova, 1: 18-26.
- Cociu, A., 2012. Winter wheat yields and their stability in different crop rotation types and nitrogen fertilization regimes. Rom. Agr. Res., 29: 139-148.
- Constantinescu, M., Rodino, S., Butu, A., Butu, M., Todirică, I., Popa, M., Chetroiu, R., Sima, N.F., 2023. Nitrogen Management Trends for Agricultural and Environmental Science. Rom. Agr. Res., 40, 417-428. https://doi.org/10.59665/rar4039
- Doran, J.W., and Parkin, T.B., 1994. *Defining and Assessing Soil Quality*. The Soil Science Society of America, Inc., Madison, WI, 35: 1-21.
- Dragomir, V., Brumă, I.S., Butu, A., Petcu, V., Tanasă, L., Horhocea, D., 2022. An overview of global maize market compared to Romanian Production. Rom. Agr. Res., 39: 337-343. https://doi.org/10.59665/rar3951
- Jităreanu, G, Ailincăi, C., Bucur, D., 2007. Soil fertility management in North-East Romania. Journal of Food, Agriculture and Environment, 5(3&4): 349-353.
- Merca, N.C., Rusu, T., Merca, I., Ona, A.-D., 2021. *Maize under the climate change impact*. Agriculture, 1-2(117-118): 13-19.
- Moțoc, M., 1975. Soil erosion and methods of combating it. Edit. Ceres, Bucharest.
- Năstasă, V., Băeşu, B., Filiche, E., 1999. The influence of crop rotation and fertilizers on corn production. Scientific Papers, Agronomy Series, 42: 43-50.
- Năstasă, V., Nistor, D., Năstasă, E., 2000. The evolution of wheat production after 31 years of experimentation under the influence of mineral and organo-mineral fertilizers, on sloping land. International Symposium "Balanced Fertilization of Agricultural Crops", Brașov: 14-18.
- Năstasă, V., and Filiche, E., 2002. The influence of long term fertilizing on winter wheat yield and some soil agrochemical indices. 13th International Symposium of CIEC, Tokat-Turkey: 28-39.

- Neamţu, T., 1985. Variation of corn production under the influence of time, rotation and fertilization level on eroded lands. Prod. Vegetable Cereals and Technical Plants, 1: 48-56.
- Nistor, D., and Nistor, D., 1979. The influence of prolonged fertilization on some properties of the soil and wheat production on the eroded lands of the Bârlad Plateau. Cerc. Agron. in Moldova, 3: 37-44.
- Petcu, V., Ciornei, L., Simion, S.P., Grădilă, M., Burtan, L., Partal, E., 2022. Cover crops from winter wheat, triticale and peas cultivated in pure stands and mixtures-soil and weed suppression benefits. Rom. Agr. Res., 39: 337-343. https://doi.org/10.59665/rar3931
- Popa, A., Stoian, G., Popa, G., Ouatu, O., 1984. *Fighting soil erosion on sloping land*. Edit. Ceres, Bucharest: 73-86.