# RELATIONSHIP BETWEEN LEAF AREA INDEX, BIOMASS AND WINTER WHEAT YIELD OBTAINED AT FUNDULEA, UNDER CONDITIONS OF 2001 YEAR

Elena Petcu<sup>1)</sup>, Gheorghe Petcu<sup>1)</sup>, Cătălin Lazăr<sup>1)</sup>, Roxana Vintilă<sup>2)</sup>

## ABSTRACT

Several data of the ADAM (Assimilation of Data within Agricultural Models) project were used to establish the relationships between agronomic variables of winter wheat. During the campaign 2000-2001, ten calibration units from seed production farms of A.R.D.I. Fundulea were selected based on several factors of variation, such as: the cultivar (Dropia and Flamura 85); the preceding crops, soils with different microtopography and nitrogen fertilization. Positive correlations between leaf area index and biomass of winter wheat in different developmental phases were found (from r = 0.66\* to r = 0.84\*\*\*). The biomass was correlated with yield (r = 0.65\*), number of seeds and number of ears/m<sup>2</sup> (r =  $0.63^*$ , r =  $0.72^{**}$ ), too. The results of regression analysis indicate that polynomial models gave the best fit for regression of total biomass and LAI (max) on harvest index and linear model for grain yield. The coefficients of determination between harvest index and total biomass are smaller than those between harvest index and grain yield. This means that wheat crops with the highest harvest index do not necessarily have the highest biomass accumulation. In fact, the opposite can be true. The magnitude of coefficient of determination for the regression of total biomass and grain yield on harvest index indicates that approximately 0.34 % of the total variation of total biomass can be attributed to variation in harvest index of the analysed wheat crop. The low correlation of this study between LAI and TKW (r = 0.29) indicates that these two traits are largely independent of each other. In fact, TKW depends on the genetic background as some researchers have reported.

Key words : leaf area index (LAI), winter wheat biomass, grain yield

## INTRODUCTION

The theory and the agricultural practice concerning the formation of photosynthetic systems with high productivity have shown that the high and qualitative yield is conditioned by numerous factors. Among them, the environmental factors with direct effect on photosynthetic activity, but also the physiological state during growth and development of the plants are very important.

An optimal combination of these factors, is necessary, but the dependence between internal factors with environmental ones is not enough known. Recently, the leaf area index or other indices of vegetation have been used in agricultural models for biomass estimation and yield prediction (Major et al., 1986; Tucker et al., 1980).

The objective of this paper was to establish the relationship between leaf area index, biomass and wheat yield.

## MATERIAL AND METHODS

The investigations were performed at Fundulea during 2000-2003 in the framework of the bilateral collaboration project with France (ADAM project). The paper presents the results of the 2000-2001 campaign, when ten experimental locations were sampled.

The selection was achieved by combining several possible factors of variation including: cultivar, the preceding crop, micro-topography and the nitrogen fertilization; the wheat experimental locations were placed in Progresul 1, Tipei, Culturi Irigate and Ileana farms of A.R.D.I. Fundulea (Table 1).

The leaf area index and biomass measurements were performed on about 10 day basis and the used samples corresponded to 3-4 replicates of 0.5 m on two adjacent rows randomly located. The yield and its components were also determined.

## **RESULTS AND DISCUSSION**

The mean and range for leaf area index (one of the most important biophysical index involved in several canopy functioning processes, Baret and Vintila, 2003) and biomass of the wheat crop in the experimental locations are presented in table 1. The variability obtained in this study is the result of the crop management. The highest leaf area index (6.34) and biomass (1534.4 g dry mat-

<sup>&</sup>lt;sup>1)</sup> Agricultural Research and Development Institute (A.R.D.I.), 915200 Fundulea, Calarasi County, Romania

<sup>&</sup>lt;sup>2)</sup> National Research and Development Institute for Soil Science, Agroindustry and Environment Protection, 61 Bd. Marasti, 011464 Bucharest 1, Romania

 $ter/m^2$ ) were reached in location number 4 while the lowest one was recorded in location number 9.

| Locations, so wing date     | Genotypes  | Soils                                      | Preceding<br>crops | Ferti-<br>lization* |
|-----------------------------|------------|--------------------------------------------|--------------------|---------------------|
| 1/10 <sup>th</sup> 2000     | Dropia     | Cambic chernozem (typical)                 | Soybean            | N+                  |
| 2/4 <sup>th</sup> 10. 2000  | Dropia     | Cambic chernozem (typical-cumulative)      | Cicer              | N-                  |
| 3/7 <sup>th</sup> 10. 2000  | Flamura 85 | Cambic chernozem (typical)                 | Cicer              | N+                  |
| 4/2 <sup>nd</sup> 10. 2000  | Dropia     | Clay-illuvial chernozem                    | Maize              | N+                  |
| 5/10 <sup>th</sup> 10. 2000 | Dropia     | Cambic chernozem (typical)                 | Maize              | N+                  |
| 6/2 <sup>nd</sup> 10. 2000  | Flamura 85 | Cambic chernozem (on slope)                | Wheat              | N+                  |
| 7/1 <sup>st</sup> 10. 2000  | Flamura 85 | Cambic chernozem (typical)                 | Cicer              | N-                  |
| 8/5 <sup>th</sup> 10. 2000  | Dropia     | Cambic chernozem (typical)                 | Pea                | N+                  |
| 9/4 <sup>th</sup> 10. 2000  | Dropia     | Cambic chernozem (typical)                 | Pea                | N+                  |
| 10/9 <sup>th</sup> 10. 2000 | Flamura 85 | Cambic chernozem (underground water stage) | Soybean            | N+                  |

Table 1. The characterization of experimental locations

\* N+: satisfactory fertilization level

N-: limitation in nitrogen fertilization

Total biomass and LAI were closely correlated until anthesis.

The linear regression between these parameters indicates the correlation coefficient from  $0.72^{**}$  to 0.66 for inflexion point of LAI(i) to maximal point of LAI(k) (Figures 1, 2, 3).



Figure 1. The relationship between biomass and leaf area index in inflexion point of LAI



*Figure 2*. The relationship between biomass and leaf area index in maximal point

The similar correlation for durum wheat under Mediterranean conditions in different developmental phases (r = 0.87; 0.78) was reported by Aparicio et al., 2002.



Figure 3. The relationship between biomass and leaf area index in anthesis phase

There is no correlation between biomass and leaf area index in declined point of LAI (Figure 4).



*Figure 4*. The relationship between biomass and leaf area index in declined point

These results indicate a simultaneous increase of biomass and leaf area index until anthesis

phase. Sala geanu and Atanasiu (1981) show that high yields are not always obtained with high leaf area: if the crop leaf area increases up to 30.000- $40.000 \text{ m}^2/\text{ha}$ , the percentage of the absorbed energy increases, but the further increasing of leaf area does not always lead to the increase of this percentage.

In this respect, we studied the correlations between these parameters and wheat yield. In Table 2, the yield, TKW, number of ears and seeds/ $m^2$  and biomass at harvest are presented.

The variability of these elements is due, on the one hand, to the genotype but, on the other hand, to preceding crop, soil and fertilization. The highest yield was recorded in experimental location 4 (Tipei Farm) under the following conditions : clay-illuvial chernozem, maize as preceding

| <i>Table 2</i> . The mean yield and its components recorded in experimental location |
|--------------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------------|

| Experimental loca- | Yield     |       | Ears       |       | TKW |       | Seeds      |       | Biomass   |       |
|--------------------|-----------|-------|------------|-------|-----|-------|------------|-------|-----------|-------|
| tions              | $(g/m^2)$ | S.D.* | $(no/m^2)$ | S.D.* | (g) | S.D.* | $(no/m^2)$ | S.D.* | $(g/m^2)$ | S.D.* |
| U-1                | 327.1     | 52    | 317        | 43    | 39  | 5.1   | 8352.95    | 26    | 1029.8    | 102   |
| -2                 | 507.61    | 97    | 400        | 43    | 40  | 1.4   | 12730.3    | 32    | 1160.39   | 86.8  |
| U-3                | 377.17    | 123   | 338        | 46    | 41  | 7.7   | 9298.56    | 27    | 1364.19   | 422   |
| U-4                | 598       | 128   | 558        | 67    | 40  | 3.7   | 14927.9    | 27    | 1534.41   | 376   |
| U-5                | 457.08    | 127   | 418        | 119   | 40  | 2.3   | 11381.8    | 27    | 1339.7    | 441   |
| U-6                | 339.71    | 110   | 349        | 29    | 38  | 5.8   | 9004.34    | 26    | 1053.19   | 304   |
| U-7                | 467.99    | 210   | 377        | 112   | 46  | 3.3   | 10222.8    | 27    | 1026.05   | 461   |
| U-8                | 342.32    | 85    | 291        | 32    | 40  | 5.0   | 8466.56    | 29    | 1180.51   | 400   |
| U-9                | 501.85    | 92    | 406        | 54    | 45  | 1.5   | 11232.4    | 28    | 937.46    | 272   |
| U-10               | 503.23    | 193   | 410        | 61    | 45  | 3.7   | 11276.7    | 28    | 1214.34   | 311   |

\*S.D. = standard deviation

Table 3. Relationships between the investigated agronomic variables

| Independent          | Dependent                |                                      | Determination  | Correlation coefi- |
|----------------------|--------------------------|--------------------------------------|----------------|--------------------|
| variable             | variable                 | Regression                           | coefficients   | cients             |
| (x)                  | (y)                      | Ŭ                                    | $\mathbb{R}^2$ | r                  |
| Biomass              | Harvost indox            | Y = 0.1893 x + 218.1                 | 0.15           | -0.39              |
| Diomass              | That vest much           | $Y = 0.0012 x^2 - 2.7813 x + 2004.3$ | 0.34           | 0.58*              |
| Vield                | Harvest index            | Y = 0.0388 x + 18.977                | 0.72           | 0.84***            |
| 1 ICIU               | That vest much           | $Y = -0.0004 x^2 + 0.406 x - 63.689$ | 0.58           | 0.76**             |
| Viold                | I AI (k)                 | Y = 0.0053x + 1.266                  | 0.35           | 0.59*              |
| 1 ICIU               | LAI (K)                  | Y = 3E - 0.5x2 - 0.0202x + 7.1403    | 0.51           | 0.71**             |
| Harvest index        | LAI (k)                  | $Y = -0.483x^2 + 5.9031x + 23.114$   | 0.12           | -0.34              |
| LAI (k)              | TKW                      | Y = -0.66x + 43.77                   | 0.0859         | 0.29               |
| Viold                | Biomass                  | Y = 1.5552x - 119.71                 | 0.042          | 0.65*              |
| Tielu                | DIUIIIdSS                | $Y = 0.0092x^2 - 7.4551x + 2608.7$   | 0.278          | 0.51               |
|                      | Soods/m <sup>2</sup>     | $Y = 390.76x^2 - 2109.8x + 12.610$   | 0.57           | 0.75**             |
| LAI (K)              | Seeus/III                | Y = 1186x + 6259.1                   | 0.475          | 0.69*              |
| Ears/m <sup>2</sup>  | Biomass<br>(at anthesis) | Y = 6.1016x + 7223.5                 | 0.4075         | 0.63*              |
| Seeds/m <sup>2</sup> | Biomass<br>(at anthesis) | Y = 2.1241x-252.87                   | 0.52           | 0.72**             |
| Ears/m <sup>2</sup>  | LAI (k)                  | Y = 40.594x + 227.4                  | 0.475          | 0.68*              |

crop, cultivar Dropia and fertilization in optimal rates.

Based on the experimental results, significant and complex relationships between the analysed characters were found (Table 3). The results of regression analysis indicate that polynomial models gave the best fit for regression of total biomass and LAI (max) on harvest index and linear model for grain yield. The coefficients of determination between harvest index and total biomass ( $R^2 = 0.34$ ) are smaller than those between harvest index and grain yield ( $R^2 = 0.58$ ). This means that an wheat crop with the highest harvest index does not necessarily has the highest biomass accumulation. In fact, the opposite can be true.

The low correlation of this study between LAI and the TKW indicates that these two traits are independent of each other. In fact, TKW depends on the genetic background as some **e**-searchers have reported.

There are also positive correlations between LAI and number of seeds obtained per  $m^2$  (r = 0,69) and between biomass and number of grains and spikes per  $m^2$ , with correlation coefficients of 0.63 and 0.72 respectively.

#### CONCLUSIONS

The experimental results indicate a close correlation between leaf area index and biomass until anthesis phase and between biomass and the yield of tested winter wheat genotypes. Under different crop management conditions (two genoptypes, soil, preceding crop and fertilizer application), statistically assured coefficients of correlation were obtained. So, the values ranged from 0.66\* to 0.84\*\*\* from the early stage of vegetation to anthesis phases. The biomass was correlated with the yield, number of seeds and number of ears/ m<sup>2</sup> (r= 0.65\*; r = 0.63\*, r = 0.72\*\*).

These results suggest that LAI (until anthesis phase of development ) could be used in agricultural models for biomass estimation useful in yield prediction.

### REFERENCES

- Aparicio, N., Villegas, D., Casadesus, J., Araus, J.L., and Royo, C. 2000. Spectral vegetation indices as nondestructive tools for determining durum wheat yield. Agron.J. 91: 1128-1132.
- Baret, F., Vintilā, R. 2003. Satellite derived leaf area index derived from SPOT time series in the ADAM Project. Proceedings of IGARSS Conference, 2003, Toulouse, France.
- Major, D.G., Schaalje, G.B., Asrar, G., Kanemasu, E.T., 1986. Estimation of whole plant biomass and grain yield from spectral reflectance of cereals. Canadian Journal of Remote Sensing 12(1): 47-54.
- Sālāgeanu, N., Atanasiu, L., 1981. Fotosinteza. Editura Academiei R.S.R: 178-181.
- Tucker, C.J., Holben, B.N., Elgin, J.H., Murtey, J.E., 1980. Relation of spectral to grain yield variation. Photogrammetric Engineering and Remote Sensing, 46 (5): 43-66.

# Table 1

Average yield of experiments with winter wheat cultivars, under irrigation and dry-land in six localities from the South of Romania (2002)

|            | Average y   | Yield percentage |            |
|------------|-------------|------------------|------------|
| Locality   | irrig ation | dry-land         | diminution |
|            | (kg/ha)     | (kg/ha)          |            |
| Caracal    | 8560        | 5601             | 34.6       |
| Marculesti | 4716        | 3075             | 34.8       |
| Teleorman  | 5963        | 3594             | 39.8       |
| V. Traian  | 6941        | 3794             | 45.3       |
| Fundulea   | 4858        | 1918             | 60.5       |
| Simnic     | (8560)      | 380              | 95.6       |

Table 2

Percentage diminution of some plant features under water stress conditions

| Locality  | Plant<br>number | Plant<br>height | Grain<br>filling<br>period | Spike<br>number | Grain/ear | TKW  | Test weight |
|-----------|-----------------|-----------------|----------------------------|-----------------|-----------|------|-------------|
| Caracal   | 0               | 14,9            | 15,0                       | 7,9             | 10,2      | 14,1 | 0,9         |
| Teleorman | 0               | 10,0            | 19,2                       | 12,0            | 12,0      | 11,9 | 1,0         |
| V.Traian  | 34,9            | 21,0            | 16,9                       | 42,5            | 12,2      | 2,9  | 8,1         |
| Fundulea  | 4,9             | 28,8            | 24,9                       | 6,9             | 28,9      | 29,5 | 3,9         |

as compared to irrigation

#### ROMANIAN AGRICULTURAL RESEARCH

| Simnic | 27,6 | 61,7 | 30,0 | 65,0 | 64,5 | 53,1 | 10,7 |
|--------|------|------|------|------|------|------|------|
| Media  | 13,5 | 27,3 | 21,2 | 26,9 | 25,6 | 22,3 | 4,9  |

## Table 3

Minimum, maximum and average yields registered at Fundulea in 2002 in international trials

| WWEERYT with | genotypes grou | ped depending | on the originatin | g country |
|--------------|----------------|---------------|-------------------|-----------|
|              |                |               |                   |           |

| Source            | Average yield of<br>the tested geno-<br>types<br>(kg/ha) | Maximum yield of<br>the tested genotypes<br>(kg/ha) | Minimum yield of<br>the tested geno-<br>types<br>(kg/ha) |
|-------------------|----------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|
| Romania           | 2368                                                     | 2953                                                | 2073                                                     |
| Russia            | 2327                                                     | 2453                                                | 1980                                                     |
| Ukraina-Odessa    | 2224                                                     | 3013                                                | 1287                                                     |
| Hungary           | 2181                                                     | 2780                                                | 1320                                                     |
| Ukraina-Mironovka | 2108                                                     | 2753                                                | 1500                                                     |
| Moldova           | 1927                                                     | 2560                                                | 1293                                                     |
| Bulgaria          | 1898                                                     | 2873                                                | 1313                                                     |
| Turkey            | 1893                                                     | 2420                                                | 1487                                                     |
| Azerbaidjan       | 1460                                                     | 1553                                                | 1367                                                     |
| Kazahstan         | 1422                                                     | 1833                                                | 853                                                      |
| LSD 59            | 6                                                        | 243                                                 | 275                                                      |

Table 4

Correlations between yield under water stress conditions and different traits

|          | Average                                                  | Con                       | Correlation coefficients between yield under water stress conditions and: |                                     |                 |              |           |     |  |
|----------|----------------------------------------------------------|---------------------------|---------------------------------------------------------------------------|-------------------------------------|-----------------|--------------|-----------|-----|--|
| Locality | yield<br>diminution<br>because of<br>water stress<br>(%) | yield under<br>irrigation | plant height<br>under<br>stress<br>conditions                             | plant height<br>under<br>irrigation | heading<br>time | spike/<br>m² | grain/ear | TKW |  |

| ELENA PETCU ET AL.: RELATIONSHIP BETWEEN LEAF AREA INDEX, BIOMASS AND WINTER WHEAT YIELD |
|------------------------------------------------------------------------------------------|
| OBTAINED AT FUNDULEA, UNDER CONDITIONS OF 2001 YEAR                                      |

| Caracal     | 34,6 | 0,48  | 0,29 | -0,31 | -0,12 | 0,20 | 0,11 | -0,30 |
|-------------|------|-------|------|-------|-------|------|------|-------|
| Teleorman   | 39,8 | 0,80  | 0,35 | 0,31  | -0,85 | 0,58 | -    | -     |
| Valu Traian | 45,3 | 0,04  | 0,33 | 0,20  | -0,40 | 0,42 | 0,40 | 0,22  |
| Fundulea    | 60,5 | 0,00  | 0,46 | -0,31 | -0,46 | 0,52 | 0,30 | -0,17 |
| Simnic      | 95,6 | -0,01 | 0,41 | -0,62 | -0,04 | 0,40 | 0,50 | 0,15  |

The bold characters are significant at the probability level of 0.05



Figure 1. Average evapotranspiration and rainfall during 1999-2002 at Fundulea (mm water; month; wheat evapotranspiration; rainfall)



Figure 2. Average evapotranspiration and rainfall during the vegetation period in six locations of Southern of Romania in 2001-2002 year (mm water; month).



Figure 3. Yield obtained by some Romanian and foreign cultivars under irrigation and non-irrigation, in 2002 at Fundulea (arrows indicate the experiments average yield)(Yield under stress conditions; yield under irrigation).

ELENA PETCU ET AL.: RELATIONSHIP BETWEEN LEAF AREA INDEX, BIOMASS AND WINTER WHEAT YIELD OBTAINED AT FUNDULEA, UNDER CONDITIONS OF 2001 YEAR



Figure 4. Average yields in four locations, obtained in 2002 by Romanian new lines and cultivars under irrigation and non-irrigation (arrows indicate experiments average yield)(Yield under non-irrigation; Yield under irrigation; LSD).