INFLUENCE OF FERTILIZATION AND BACTERIZATION ON SOYBEAN PRODUCTION AND BIOLOGICAL PECULIARITIES

Cornelia Lupu and Gheorghe Lupu¹⁾

ABSTRACT

The aspects pertaining to soybean crop fertilization and their relationship with seed bacterization have been controversial along the time. Starting with aspects related to efficient use of chemical fertilizers, the present paper intends to approach the problems connected with the relationship between application of nitrogen fertilizers and soybean seed dressing with bacterial formulations. This study was conducted in a bifactorial experiment (A x B). The factors under study were chemical fertilizer rates (A) and seed treatments with bacterial strains (B), the tests being placed on a cambic chernozem with the following characteristics: humus 2.55 - 2.31%; pH - 5.7; total N 0.15 - 0.16%; P2O5 - 17 ppm; K2O - 195 ppm; C : N - 10.2 - 11.1; V - 84 -91%; Cc - 25.6 - 26%; Co - 11.5 -12.1%. Climate zone is Dfbx - Köpen. The interaction between seed bacterization and application of fertilizers resulted in higher yield gains (by seed bacterization over the not bacterized ones) on agricultural backgrounds where nitrogen was not included in the fertilization formula and lower yield gains on agricultural backgrounds with 60 kg N/ha in their fertilization formula. Frequency of plants with nodosities, the number of nodosities per plant and their fresh mass have been reduced by the use of nitrogen fertilizers. Nitrogen fertilization prior to soybean sowing is a technical mistake, leading to ineffective economical indices. Seed bacterization is an agrotechnical procedure with a significant role in obtaining yields with high economic efficiency.

Key words : bacterization, nitrogen fertilizers, nodosities, soybean.

INTRODUCTION

Soybean, as all pulses, unlike the other tion, due to the fact that it disposes of two alternative mechanisms for nitrogen nutrition: assimilation of soil combined nitrogen, which originates from mineralization of organic matter or applied as nitrogen fertilizers and fixation of atmospheric nitrogen, intermetiated by symbiotic bacteria from *Rhizobium* genus (Bâlteanu, 1979).

Aspects linked to fertilization of soybean crop have been controversial along the time. Thus, Bãlan (1975) recommended the use of moderate nitrogen and phosphorus rates. Without excluding the chemical fertilizers containing nitrogen, he showed that the valuable *Rhizobium japonicum* strains have achieved in soybean yield gains superior to N_{64} rate. Prodan and Prodan (1988) consider that yields of around 3,000 kg/ha can be obtained with a successful bacterization, without being necessary to apply nitrogen fertilizers.

Correct seed bacterization and providing conditions for occurrence of an efficient symbiosis are useful measures, compulsory for obtaining high soybean yields with educed energy consumption, while application of nitrogen before sowing is a technical mistake. From the total nitrogen amount used by soybean for the whole crop, 50-65% is provided by bacteria intermediation. Nitrogen amount produced by soybean plants in a symbiotic way should, nevertheless, be considered as very variable, depending on virulence and efficacy of bacteria, nodosities, conditions in which they develop, and the amount of soil mineral nitrogen. Between the mineral nitrogen from fertilizers and the symbiosis process a negative interaction has been established (Bâlteanu, 1979 ; Bãlan, 1975 ; Hera et al., 1980 ; Prodan and Prodan, 1988; Bâlteanu and Bârnaure, 1989).

Starting with the issues concerning the efficient use of chemical fertilizers, the experimental results relatively controversial, obtained under a great variety of environmental conditions, the present work approaches the problems linked with the ratio between application of nitrogen fertilizers and seed treatment with bacterial products in soybean for grains.

MATERIALS AND METHODS

This study was performed in a bifactorial experiment (A x B) organized according to the method of subdivided plots, in five replications.

The factors under study were :

- Factor A - Fertilizer rates (a $_1$ - $P_{60}N_0$; a_2 - $P_{90}N_0$; a_3 - $P_{60}N_{60}$; a_4 - $P_{90}N_{60}$).

¹⁾ Agro-Zootehnical Research Station (AZRS), 5563 Secuieni, Neamb County, Romania

- Factor B - Seed treatments (b_1 - not bacterized ; b_2 - bacterized with USDA 138; b_3 - bacterized with USDA 110; b_4 – bacterized with USDA 136).

The experiment (1992-1994) was set up on the cambic chernozem at AZRS Secuieni (humus 2.55 - 2.31%; pH - 5.7; total N 0.15 - 0.16%; P₂O₅ - 17 ppm; K₂O - 195 ppm; C: N - 10.2 - 11.1; V - 84 - 91%; C_c - 25.6 - 26%; C_o - 11.5 - 12.1%. Zone climate is Dfbx - Köpen). Seed bacterization was performed with bacterial products from the profile laboratory of the Research Institute for Cereals and Industrial Crops, Fundulea.

Nodosity formation was noted twice : I - 25 - 30 days from emergence and II - at plant flowering. The number of nodosities, their frequency, mass, volume and their dry mass content was determined.

Yields were expressed as kg/ha with 14% moisture ; oil content of seeds was determined with an AREMI - 1 device, while protein content by Kjeldahl method (N x 6.25). For calculation of technical-economic indices tarrifs and prices valid on 1 January 1995 were used.

Calculation and interpretation of results was performed with the ANOVA - test and with the help of correlations and regressions.

Climate diagram build-up with multiannual values (1962-1990) recorded at the meteorogical Station of Agro-Zootechnical Research Station Secuieni (Figure 1), shows that a dry period occurrs during August and September in that area.

In the research period 1992-1994 a high variability of climate conditions was re-

corded (Table 1), with nearly all possible conditions of manifestation in the climate of that area, mainly those unfavourable to plant growth and development, which significantly affected the yield achievement.

Climate:	Soil: Typical chernozem		pH:	Humus:
Dbfx-Köpen	soil		5,7-6,6	2,56-2,31%
C:N	V	N _{total}	P_2O_5	K ₂ O
10,2-11,1	84-91%	0,15-0,16%	17 ppm	195 ppm
D.a.	P.t.	C.o.		
1,26-1,33	25,5-26%	11,5-12,1%		
t/m ³				

Figure 1. Climatic diagram of Secuieni locality

RESULTS AND DISCUSSIONS

1. Grain yield

The analysis of interaction between application of fertilizers and treatment with bacterial products, (Table 2) permitted to conclude that yield gains brought by seed bacterization were greater when nitrogen was absent from fertilization formula ($P_{60}N_0$ and $P_{90}N_0$) and lower when the fertilization

Table 1. C	limatic	characterizat	ion	during the	e investigation	period
		Secuieni	, 19	92-1994		

Season	ı (A)	Spring		Su	mmer		Autum	n
Month	(L)	IV	V	VI	VII	VIII	IX	Х
1992	Α	Ν	Ν	С	FS			
	L	N - S	R-MP	N - FP	N - FP	C - FS	R-MP	N -P
1993	Α	Ν	Ν	Ν	FS			
	L	R - FP	C - S	N-MS	R-FS	N-FS	R-FP	C-MP
1994	Α	С	FS	С	MS			
	L	C -FS	N-S	N-MS	C-FS	C-MP	C-MP	N-FP

A – Season: L - Month

Characteriz ation : *Temperature*:

```
C - hot (1.7 - 1.9°C)
N - normal (-0.9 - 0.9°C)
```

```
R - cool (-1.1 - -1.9°C)
```

Rainfall:FP - very rainyMS - more dryP - rainyS - dryMP - more rainySF - very dryN - normal

formula contained 60 kg N/ha ($P_{60}N_0$ and $P_{90}N_{60}$).

Table 2. Influence of fertilizer application and treatment with bacterial products on grain yield (Secuieni, 1992-1994)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Trea	tments			Yield (kg/ha)		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ferti-	Treatment	Violde				
kg/ha strains kg/ha $P_{60}N_0$ Non-bacterized 1735 100 control - $P_{60}N_0$ Bacterized 1884 108 149 * $P_{60}N_0$ Bacterized 1999 115 264 ** $P_{60}N_0$ Bacterized 2046 118 311 *** $P_{60}N_0$ Bacterized 2046 118 311 *** $P_{90}N_0$ Bacterized 2018 111 210 ** $P_{90}N_0$ Bacterized 1987 110 179 ** $P_{90}N_0$ Bacterized 1987 110 179 ** $P_{90}N_0$ Bacterized 2055 113 247 *** $P_{90}N_0$ Bacterized 2069 105 109 - $P_{60}N_{60}$ Bacterized 2109 107 149 * $P_{60}N_{60}$ Bacterized 2109 107 149 * $P_{60}N_{60}$ Fl. USDA 136 2145 109 185 **	lizers	with bacterial	r ielus kg/ha	%	Diff.	Signif.	
$\begin{array}{c c c c c c c c } & \operatorname{Non-}_{bacterized} & 1735 & 100 & \operatorname{control} & -\\ & \operatorname{bacterized} & 1884 & 108 & 149 & *\\ & \operatorname{Bacterized} & 1999 & 115 & 264 & **\\ & \operatorname{Bacterized} & 1999 & 115 & 264 & **\\ & \operatorname{Bacterized} & 2046 & 118 & 311 & ***\\ & \operatorname{P_{60}N_{0}} & \operatorname{Bacterized} & 2046 & 118 & 311 & ***\\ & \operatorname{P_{90}N_{0}} & \operatorname{Bacterized} & 2018 & 100 & \operatorname{control} & -\\ & \operatorname{Bacterized} & 2018 & 111 & 210 & **\\ & \operatorname{P_{90}N_{0}} & \operatorname{Bacterized} & 1987 & 110 & 179 & **\\ & \operatorname{P_{90}N_{0}} & \operatorname{Bacterized} & 2055 & 113 & 247 & ***\\ & \operatorname{P_{90}N_{0}} & \operatorname{Bacterized} & 2069 & 105 & 109 & -\\ & \operatorname{Fl. USDA 136} & 2069 & 105 & 109 & -\\ & \operatorname{P_{60}N_{60}} & \operatorname{Bacterized} & 2109 & 107 & 149 & *\\ & \operatorname{P_{60}N_{60}} & \operatorname{Bacterized} & 2145 & 109 & 185 & **\\ & \operatorname{P_{90}N_{0}} & \operatorname{Bacterized} & 2145 & 109 & 185 & **\\ & \operatorname{P_{90}N_{0}} & \operatorname{Bacterized} & 2066 & 107 & 143 & *\\ & \operatorname{P_{90}N_{60}} & \operatorname{Bacterized} & 2084 & 108 & 161 & *\\ & \operatorname{P_{90}N_{60}} & \operatorname{Bacterized} & 2133 & 111 & 210 & **\\ & \operatorname{P_{90}N_{60}} & \operatorname{Bacterized} & 2133 & 111 & 210 & **\\ & \operatorname{P_{90}N_{60}} & \operatorname{Bacterized} & 2133 & 111 & 210 & **\\ & \operatorname{P_{90}N_{60}} & \operatorname{Bacterized} & 2133 & 111 & 210 & **\\ & \operatorname{P_{90}N_{60}} & \operatorname{Bacterized} & 2133 & 111 & 210 & **\\ & \operatorname{P_{90}N_{60}} & \operatorname{Bacterized} & 2133 & 111 & 210 & **\\ & \operatorname{P_{90}N_{60}} & \operatorname{Bacterized} & 2133 & 111 & 210 & **\\ & \operatorname{P_{90}N_{60}} & \operatorname{Bacterized} & 2133 & 111 & 210 & **\\ & \operatorname{P_{90}N_{60}} & \operatorname{Bacterized} & 2133 & 111 & 210 & **\\ & \operatorname{P_{90}N_{60}} & \operatorname{Bacterized} & 2133 & 111 & 210 & **\\ & \operatorname{P_{90}N_{60}} & \operatorname{Bacterized} & 2133 & 111 & 210 & **\\ & \operatorname{P_{90}N_{60}} & \operatorname{Bacterized} & 2133 & 111 & 210 & **\\ & \operatorname{P_{90}N_{60}} & \operatorname{Bacterized} & 2133 & 111 & 210 & **\\ & \operatorname{P_{90}N_{60}} & \operatorname{Bacterized} & 2133 & 111 & 210 & **\\ & \operatorname{P_{90}N_{60}} & \operatorname{P_{1}USDA 136 & 2133 & 111 & 210 & **\\ & \operatorname{P_{90}N_{60}} & \operatorname{P_{1}USDA 136 & 2133 & 111 & 210 & **\\ & \operatorname{P_{90}N_{60}} & \operatorname{P_{1}USDA 136 & 2133 & 111 & 210 & **\\ & \operatorname{P_{90}N_{60}} & \operatorname{P_{1}USDA 136 & 2133 & 111 & 210 & **\\ & \operatorname{P_{90}N_{60}} & \operatorname{P_{1}USDA 136 & 2133 & 111 & 210 & **\\ & P$	kg/ha	strains	кд/па				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P.N.	Non-	1735	100	control	-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 60 ⁻ •0	bacterized	1100	100	control		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	PaN	Bacterized	1884	108	149	*	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	60 U	Fl. USDA 138					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$P_{60}N_0$	Bacterized	1999	115	264	**	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	00 0	FI. USDA 110					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$P_{60}N_0$	Bacterized	2046	118	311	***	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	00 0	FI. USDA 136					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$P_{90}N_{0}$	Non-	1808	100	control	-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	00 0	bacterized					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$P_{90}N_{0}$	Bacterized	2018	111	210	**	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$P_{90}N_{0}$	FI. USDA 150 Paotorized					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		FLUSDA 110	1987	110	179	**	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Pl. USDA 110 Bacterized					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$P_{90}N_{0}$	FL USDA 136	2055	113	247	***	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Non-					
$\begin{array}{c cccccc} & Bacterized & 2069 & 105 & 109 & - \\ \hline P_{60}N_{60} & Bacterized & 2109 & 107 & 149 & * \\ \hline P_{60}N_{60} & Bacterized & 2145 & 109 & 185 & ** \\ \hline P_{60}N_{60} & Bacterized & 2145 & 109 & 185 & ** \\ \hline P_{90}N_{60} & Bacterized & 1923 & 100 & control & - \\ \hline P_{90}N_{60} & Bacterized & 2066 & 107 & 143 & * \\ \hline P_{90}N_{60} & Bacterized & 2084 & 108 & 161 & * \\ \hline P_{90}N_{60} & Bacterized & 2133 & 111 & 210 & ** \\ \hline \end{array}$	$P_{60}N_{60}$	bacterized	1960	100	control	-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Bacterized					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$P_{60}N_{60}$	Fl. USDA 138	2069	105	109	-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	D N	Bacterized	0100	107	1.40	ч г	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$P_{60}N_{60}$	Fl. USDA 110	2109	107	149	*	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DN	Bacterized	9145	100	105	**	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F ₆₀ IN ₆₀	Fl. USDA 136	2145	109	105		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	DN	Non-	1092	100	control		
$\begin{array}{cccc} P_{90}N_{60} & \begin{array}{c} Bacterized \\ Fl. USDA 138 \\ P_{90}N_{60} & \begin{array}{c} Bacterized \\ Fl. USDA 110 \\ Fl. USDA 110 \\ P_{90}N_{60} \end{array} \begin{array}{c} 2084 \\ 108 \\ 161 \\ 111 \\ 210 \end{array} \begin{array}{c} * \\ * \end{array}$	1 ₉₀ 1 1 60	bacterized	1525	100	COILLOI	-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ΡN	Bacterized	2066	107	143	*	
$\begin{array}{cccc} P_{90}N_{60} & \begin{array}{c} Bacterized \\ Fl. USDA 110 \\ P_{90}N_{60} & \begin{array}{c} Bacterized \\ Fl. USDA 136 \end{array} & \begin{array}{c} 2084 & 108 & 161 & * \\ 2133 & 111 & 210 & ** \end{array}$	∎90 ¹ №60	Fl. USDA 138	2000	107	145		
$\begin{array}{cccc} & & & \text{Fl. USDA 110} & & & & \text{for} & & & \text{for} & & \\ & & & & \text{Bacterized} & & & \\ & & & & \text{Fl. USDA 136} & & & & \\ \end{array}$	ΡN	Bacterized	2084	108	161	*	
$ P_{90} N_{60} = \begin{array}{c} {\rm Bacterized} \\ {\rm Fl. \ USDA \ 136} \end{array} 2133 111 \qquad 210 ** \\$	-90 ⁺ •60	Fl. USDA 110	2001	100	101		
³⁰ ⁵⁰ Fl. USDA 136	P. N.	Bacterized	2133	111	210	**	
	90 GO	Fl. USDA 136					

LSD 5% - 115 kg/ha

1% - 157 kg/ha

0.1% - 212 kg/ha

In the firmer case yield gains were of 8-10% (149-311 kg/ha), while in the latter, 5-11% (109-210 kg/ha).

According to the average of the period 1992-1994, yield gains obtained with fertilization application were of 3-8% (59-162 kg/ha) (Table 3).

Table 3. Influence of fertilizer application on soybean yield. Secuieni, 1992-1994

Ferti- lizers kg/ha	Yield kg/ha	Variation limits	%	Diff. Sig	nif.
$P_{60}N_0$	1908	1603 - 2161	100	Control -	
$P_{90}^{00}N_{0}^{0}$	1967	1628 - 2226	103	59 *	
P60N60	2070	1769 - 2320	108	162 **	ĸ
$P_{90}^{00}N_{60}^{00}$	2051	1693 - 2367	107	143 *	**
LSD :	5% = 51	1 kg/ha			
	1% = 7	4 kg/ha			
0.	1% = 10	9 kg/ha			

By means of seed bacterization, yield gains over the check not bacterized attained 8-12% (152-259 kg/ha) (Table 4). Seed bacterization with USDA-136 strain provided a steady yield gain of 11-14% in the period under study. The yield achieved in the variant without bacterization during 1992-1994 ranged between 1553-2114 kg/ha, representing 88.0 - 92.4% of the bacterized variants.

Table 4. Influence of treatment with bacterial products on soybean yield. Secuieni, 1992-1994

Treatment	Yield	Variation limits	%	Diff.	Signif.
Untreated	1857	1553-2142	100	Control	-
Fl. USDA-138	2009	1684-2258	108	152	* * *
Fl. USDA-110	2045	1712-2301	110	188	* * *
Fl. USDA-136	2086	1744-2373	112	229	* * *
LSD 5% =	60 kg/ha	1			

5% = 60 kg/ha

1% = 81 kg/ha

0.1% = 107 kg/ha

2. Chemical composition of grains Kernel oil content was more influenced by climate conditions and less by application

of fertilizers (Table 5) and seed treatments.

Table 5. Influence of fertilizer application on oil content of soybean grains. Secuieni, 1992-1994

Fertilizer	Grain oil content, %							
rates	1992	1993	1994	1992-1994				
$P_{60}N_{0}$	22.2	23.2	19.4	21.6				
$P_{90}N_{0}$	22.8	23.2	19.7	21.9				
$P_{60}N_{60}$	22.7	23.3	19.7	21.9				
$P_{90}N_{60}$	22.1	23.4	19.9	21.8				

Crude protein content of kernels was the most influenced by the seed treatment. Thus, by seed treatment with bacterial products, an increase of protein content in seeds of 3.6 -4.2% (Table 6) was recorded. over the untreated check.

Treatment	Crude protein content in grains (%)					
Heatment	1992	1993	1994	1992-1994		
Untreated	40.31	40.51	40.79	40.53		
Fl. USDA - 138	42.03	42.05	41.98	42.02		
Fl. USDA - 110	42.03	42.03	42.48	42.18		
Fl. USDA - 136	41.97	41.97	42.68	42.20		

Table 6. Influence of treatment with bacterial products on crude protein content in soybean Secuieni, 1992 - 1994

3. Formation and development of nodosities

When the frequency of plants with modosities on roots was analysed as depending on the applied fertilizer rates (1992-1994 average), an increase tendency of plant frequency with nodosities on root ramifications was noted for variants including 60 kg N/ha in their fertilization formula (Table 7). The number of nodosities on plant roots was directly correlated with climate conditions of the year, as well as with the applied fertilizers. During 1992-1994 the average number of nodosities per plant was 21.88; in 1992 it was 30.60 (superior to period average by 40.2%) and in 1993 only 16.81 (below the period average by 14.04%).

The number of nodosities per plant, in variants lacking nitrogen in the fertilization formula ranged between 19.25-38.00, while in variants including 60 kg/ha in the fertilization formula, the number of nodosities per plant was 11.75-24.50.

Fresh weight of nodosities per plant reached higher values in variants in which nitrogen missed from the fertilization formula (518-801 mg/plant) and lesser in variants having the fertilization formula 60 kg N/ha (401-604 mg/plant).

On an average of the period under study the application of 60 kg N/ha

 Table 7. Influence of treatment with bacterial strains on frequency and mass of nodosities in soybean.

 Secuieni, 1992 - 1994

Treatment	Frequenc with nod	cy of plants osities (%)	Nodos	ity number pe	r plant	Weight of (mg/	nodosities plant)
	axis	branches	axis	branches	axis + branches	fresh	dry
			1992				
Non-bacterized	66.25	62.50	11.25	8.50	19.75	431	92
Bact. Fl. USDA 138	87.50	91.25	12.50	21.50***	34.00**	766***	171***
Bact. Fl. USDA 110	83.75	88.75	16.25***	19.25**	35.50**	823***	185***
Bact. Fl. USDA 136	73.75	90.00	11.50	22.00***	33.50**	751***	165***
	LSD 5%		2.1	5.9	8.0	74.6	16.4
	LSD 1%		3.1	8.5	11.6	107.3	23.6
	LSD 0.1%		4.6	12.5	17.8	157.9	34.7
			1993				
Non-bacterized	62.50	45.00	4.75	5.50	10.25	348	81
Bact. Fl. USDA 138	92.50	80.00	6.50	11.75**	18.25***	552***	128***
Bact. Fl. USDA 110	90.00	85.00	9.50**	8.25	17.75***	537***	124***
Bact. Fl. USDA 136	91.25	83.75	7.75*	10.00*	17.75***	552***	122***
	LSD 5%		2.5	3.5	3.3	61.8	13.9
	LSD 1%		3.6	5.0	4.8	88.8	20.1
	LSD 0.1%		5.3	7.4	7.1	130.7	29.5
			1994				
Non-bacterized	56.25	57.50	6.75	3.50	10.25	373	87
Bact. Fl. USDA 138	65.00	88.75	11.25**	12.00***	23.25***	641***	145***
Bact. Fl. USDA 110	71.25	86.25	6.50	12.00***	18.50***	572***	124***
Bact. Fl. USDA 136	68.75	90.00	8.25	15.00***	13.25	579***	134***
	LSD 5%		2.8	1.7	3.6	53.1	11.6
	LSD 1%		4.0	2.4	5.1	76.4	16.8
	LSD 0.1%		5.9	3.6	7.6	112.4	24.7
_			1992-19	94			
Non-bacterized	61.66	55.00	7.58	5.83	13.41	384	87
Bact. Fl. USDA 138	81.66	86.66	10.08***	15.08***	25.16***	653***	148***
Bact. Fl. USDA 110	81.66	86.66	10.75***	13.33***	24.08***	644***	144***
Bact. Fl. USDA 136	81.25	87.91	9.16*	15.66***	24.82***	627***	140***
	LSD 5%		1.3	2.1	2.8	33.4	7.4
	LSD 1%		1.7	2.8	3.8	45.1	10.0
	LSD 0.1%		2.3	3.8	5.2	60.6	13.3

(compared to N_0) determined a decrease of frequency of plants with nodosities on root ramifications by 5%, a decrease of the number of nodosities per plant by 36.06% and of their fresh mass by 17%.

Mass of nodosities per plant was influenced by the fertilizers used, the number of nodosities per plant and climate conditions in the years of investigations. Lower values were recorded in variants including 60 kg N/ha in their fertilization formula and in the years with unfavourable conditions for formation and activity of nitrogen fixing bacteria (1993 and 1994).

Analysis of frequency of nodosities on plant roots, as depending on seed treatment with bacterial products, demonstrated that their values ranged between 56.25 - 66.25% on root axis and 45.00 - 62.50% on root branches in variants without bacterization and 65.00 - 92.50 % on root axis and 80.00 - 91.25% on root ramification in bacterized variants (Table 8).

The number of nodosities per plant following the seed treatment with bacterial preparations recorded an increase (compared to untreated plot) by 78 - 127%, as depending on climate conditions of the investigation year and type of bacteria strain.

By seed treatment with bacterial products, an increase of fresh mass nodosities per plant by 53.3 - 90.0% was recorded.

4. Technical-economic indices

Technical-economic indices attained with application of chemical fertilizers were influenced by the yields achieved with application of fertilizers and value of cropping expenses (Figure 2). Fertilizer application with the inves-

 Table 8. Influence of fertilizer application on frequency of the number of nodosities and their mass in soybean

 Secure in, 1992-1994

Fertilizer rates	Frequer with no	ncy of plants odosities, %	No	No. nodosities per plant			of nodosities /plant)
kg/ha	axis	branches	axis	branches	axis + branches	fresh	dry
	1992						
$P_{60}N_{0}$	82.50	83.75	16.75	19.50	36.25	801	174
$P_{90}N_{0}$	85.00	87.50	15.75	22.25	38.00	780	175
$P_{60}N_{60}$	77.50	81.25	10.00°°	14.50 [°]	24.50 [°]	$604^{\circ\circ}$	130 ^{°°°}
$P_{90}N_{60}$	78.75	80.00	9.00 ^{°°}	15.00 [°]	24.00 ^{°°}	576 ^{°°°}	$134^{\circ\circ}$
	DL 59	%	4.1	4.4	8.3	95.7	21.0
	DL 19	6	5.9	6.3	12.0	137.7	30.0
	DL 0.1	1%	8.4	9.3	17.7	202.5	44.0
			19	93			
$P_{60}N_0$	83.75	80.00	7.75	13.50	21.25	518	118
$P_{99}N_0$	87.50	72.50	6.50	12.75	19.25	558*	124
$P_{60}N_{60}$	81.25	68.67	7.75	4.75 ^{***}	$12.50^{\circ\circ\circ}$	512	118
$P_{90}N_{60}$	91.25	72.50	6.50	5.25 ^{***}	$11.75^{\circ\circ\circ}$	401 ^{°°°}	94 ^{~~~}
00 00	DL 59	%	2.1	1.9	3.1	39.5	9.0
	DL 1%	, D	3.1	2.8	4.5	56.8	12.9
	DL 0.1	%	4.5	4.2	6.6	83.6	19.0
			19	94			
$P_{60}N_0$	60.00	80.00	8.25	14.50	22.75	539	119
$P_{90}N_0$	62.50	82.50	10.00*	12.75	22.75	582	129
$P_{60}^{0}N_{60}^{0}$	71.25	77.50	7.25	7.25 ^{***}	14.50 ^{°°°}	533	119
$P_{90}N_{60}$	67.50	82.50	7.25	8.00	15.25 ^{°°°}	510	122
	DL 5%)	1.6	2.2	2.6	46.4	10.5
	DL 1%)	2.4	3.1	3.7	66.8	15.12
	DL 0.1	.%	3.5	4.6	5.4	38.3	2.3
			1992 -	1994			
$P_{60}N_0$	74.51	81.25	10.91	15.83	26.74	619	137
$P_{90}N_0$	78.33	80.83	10.75	15.91	26.66	640	143
$P_{60}N_{60}$	76.66	75.80	8.33 ^{°°}	8.83 ^{•••}	17.16 ^{°°°}	550 ^{°°°}	122 ^{°°°}
$P_{90}N_{60}$	79.16	78.33	7.58 ^{°°°}	9.41 °°°	16.99 ^{°°°}	495 °°°	117°°
	DL 5%	, D	1.5	1.6	2.8	34.3	7.6
	DL 1%	,)	2.0	2.1	3.8	46.3	10.2
	DL 0.1	%	2.7	2.8	5.0	61.7	13.7

tigated rates compared to check led to an increase of production expenses (acquiring, application, harvesting, transport of yield gains) by 28 - 96 thous.lei/ha. In this context, the profit obtained decreased by 8 - 46.2 thous. lei/ha, the profitability rate by 6.1 - 22.0%, while the energetic output from 2.48 to 1.92. The production cost increased by 32.1 thous. lei/t; energetic expenses from 16,000 Mj/ha to 22,165 Mj/ha. Analysing these data, the prevailing idea is that nitrogen fertilizer applic ation in soybean crop is a technical mistake, negatively influencing the economic -financial results obtained.

Figure 2. The main technical-economic indices as a function of fertilizer application under soil and climate conditions of the Moldavian Central Plateau (1992 – 1993)

The technical-economic indices obtained by seed bacterization, compared to the ubacterized check are given in figure 3.

Figure 3. The main technical-economic indices as a function of seed bacterization (1992 – 1994)

Thus, by bacterization of seeds compared to those unbacterized, production expenses increased by 20,000 lei/ha, production value by 80.4 thous. lei/ha, profitability rate by 15.9%, energetic value by 15.9%, yield energetic value by 5916 Mj/ha, and the energetic output from 2.39 to 2.62.

These results outline that seed bacterization is an agronomic measure of particular significance for achieving high yields with good economic efficiency.

CONCLUSIONS

The interaction between seed bacterization and fertilizer application resulted in obtaining greater yield gains, by using the bacterial products on agricultural backgrounds without nitrogen in their fertilization formula ($P_{60}N_0$ and $P_{50}N_0$) and lower yield gains on agricultural backgrounds which contained 60 kg N/ha in their fertilization formula. In the first case the yield gain was 8-18%, while in the second was 5-11%. Yield gain attained by fertilization (1992-1994) was 3-8%, while through seed bacterization it was 8-12%.

By applying nitrogen fertilizers (60 kg N/ha), the frequency of plants with nodosities decreased by 5%, the number of nodosities per plant by 36.00%, and their fresh mass by 17%. Soybean fertilization before sowing constitutes a technical and economic mistake.

Seed bacterization at sowing is an important agrotechnical measure for obtaining high yields and great economic efficiency.

REFERENCES

- Bālan, N., 1975. Cercetāri privind re laļia dintre fertilizarea cu azot ^oi bacterizarea seminţelor la soia. Analele I.C.C.P.T.Fundulea, seria B, vol., XL.
- Bâlteanu, G., 1979. Plantele de cultură hrană ^oi materii prime. Edit. Albatros, Bucure^oti.
- Bâlteanu, G., Bârnaure, V., 1989. Fitotehnie. Edit. Ceres, Bucureºti.
- Hera, C., Ghinea, L., Toncea, L., 1980. Folosirea azotului fixat biologic de către soia în condițiile chimizării complexe a agriculturii. Probleme de agrofitotehnie teoretică ^oi aplicată, vol. II, nr.1.
- Prodan, M., Prodan, L., 1988. Aspecte privind fertilizarea cu azot în vegetație la cultura soiei bacterizată în condiții de irigare. Cereale ^oi plante tehnice, nr. 5.

Table 1. Climatic characterization during the investigation period(Secuieni, 1992-1994)

Season	1 (A)	Spri	ng		Summer		Autumn	
Month	(L)	IV	V	VI	VII	VIII	IX	Х
1992	Α	N -	Ν	C-	FS			
	L	N - S	R-MP	N - FP	N - FP	C - FS	R-MP	N -P
1993	Α	Ν	Ν	Ν	FS			
	L	R-FP	C - S	N-MS	R-FS	N-FS	R-FP	C-MP
1994	Α	С	FS	С	MS			
	L	C-FS	N-S	N-MS	C-FS	C-MP	C-MP	N-FP

A - Season

L - Month

Characterization : Temperature

C - hot (1.7 - 1.9°C) N - normal (-0.9 - 0.9°C) R - cool (-1.1 - -1.9°C) Rainfall FP - very rainy P - rainy MP - more rainy N - normal MS - more dry S - dry SF - very dry

Table 2. Influence of fertilizer application and treatment with bacterial products on grain yield (Secuieni, 1992-1994)

Trea	tments	Yield (kg/ha)				
Fertil	Treatment	1992-	1992-	1992-	1992-	
izer	with bacte-	1994	1994	1994	1994	
rates	rial strains	Yields	%	Differ-	Sig-	
		kg/ha		ence	nifi-	
					cance	
$P_{60}N_{0}$	Non-	1735	100	control	-	
	bacteri					
	zed					
$P_{60}N_{0}$	Bact. Fl.	1884	108	149	*	
	USDA 138					
$P_{60}N_{0}$	Bact. Fl.	1999	115	264	**	
	USDA 110					
$P_{60}N_{0}$	Bact. Fl.	2046	118	311	***	
	USDA 136					
$P_{90}N_{0}$	Non-	1808	100	control	-	
	bacteri					
	zed					
$P_{90}N_{0}$	Bact. Fl.	2018	111	210	**	
	USDA 138					

$P_{90}N_0$	Bact. Fl.	1987	110	179	**
$P_{90}N_0$	Bact. Fl.	2055	113	247	***
P ₆₀ N ₆ 0	Non- bacteri	1960	100	control	-
P ₆₀ N ₆	zed Bact. Fl. USDA 138	2069	105	109	-
${}^{0}_{P_{60}}N_{6}$	Bact. Fl.	2109	107	149	*
${}^{0}_{P_{60}}N_{6}$	Bact. Fl.	2145	109	185	**
${}^{0}_{P_{90}}N_{6}$	Non- bacteri	1923	100	control	-
0 P ₉₀ N ₆	zed Bact. Fl.	2066	107	143	*
${\stackrel{_{0}}{P}}{}_{90}N_{6}$	USDA 138 Bact. Fl. USDA 110	2084	108	161	*
0 P ₉₀ N ₆ 0	Bact. Fl. USDA 136	2133	111	210	**
LSD	5%	115 kg/	'ha		
	1% 0.1%	157 kg/ 212 kg/	ha ha		
	0.1/0	wiw Kg/	nu		

Table 3. Influence of fertilizer application on soybean yield(Secuieni, 1992-1994)

Fertil-	Yield	Variation	%	Differ-	Sig-
izer	kg/ha	limits		ences	nifi-
rate	0				canc
					e
$P_{60}N_0$	1908	1603 - 2161	100	Control	-
$P_{90}N_0$	1967	1628 - 2226	103	59	х
$P_{60}N_{60}$	2070	1769 - 2320	108	162	XXX
$P_{90}N_{60}$	2051	1693 - 2367	107	143	xxx

LSD 5% = 51 kg/ha 1% = 74 kg/ha 0/1% = 109 kg/ha

Table 4. Influence of treatment with bacterial products on
soybean yield (Secuieni, 1992-1994)

Treatment	Yield	Varia- tion limits	%	Differ- ences	Sig- nifi- canc
				~ · ·	e
Untreated	1857	1553- 2142	100	Control	-
Fl. USDA-138	2009	1684 - 2258	108	152	XXX
Fl. USDA-110	2045	1712- 2301	110	188	xxx
Fl. USDA-136	2086	1744 - 2373	112	229	XXX

LSD 5% = 60 kg/ha1% = 81 kg/ha0.1% = 107 kg/ha

Table 5. Influence of fertilizer application on oil content of soybean grains (Secuieni, 1992-1994)

Ferti l-	Grain oil content (%)							
izer								
rate								
	1992	1993	1994	1992-1994				
$P_{60}N_{0}$	22.2	23.2	19.4	21.6				
$P_{90}N_{0}$	22.8	23.2	19.7	21.9				
$P_{60}N_{60}$	22.7	23.3	19.7	21.9				
$P_{90}N_{60}$	22.1	23.4	19.9	21.8				

Table 6. Influence of treatment with bacterial products on crude protein content in soybean (Secuieni, 1992-1994)

Treatment	Crude protein content					
	in graiı	ıs (%)	-			
	1992	1993	1994	1992-		
				1994		
Untreated	40.31	40.51	40.79	40.53		
Fl. USDA - 138	42.03	42.05	41.98	42.02		
Fl. USDA - 110		42.03	42.48	42.18		
Fl. USDA - 136	41.97	41.97	42.68	42.20		

Table 8. Influence of fertilizer application on frequency of
the number of nodosities and their mass in soybean
(Secuieni, 1992-1994)

		199	2					
Fertilizer rates	Frequen with no	Frequency of plants with nodosities (%)		No. nodosities per plant			Weight of nodosi- ties (mg/plant)	
	Axis	Branches	Axis	Branches	Axis + branches	Fresh	Dry	
$P_{60}N_0$	82.50	83.75	16.75	19.50	36.25	801	174	
$P_{90}N_0$	85.00	87.50	15.75	22.25	38.00	780	175	
$P_{60}N_{60}$	77.50	81.25	10.00^{00}	14.50°	24.50°	604^{00}	130^{000}	
$P_{90}N_{60}$	78.75	80.00	9.00^{00}	15.00°	24.00^{00}	576^{000}	134^{00}	
DL 5%		4.1	4.4	8.3	95.7	21.0		
	DL 1	1%	5.9	6.3	12.0	137.7	30.0	
	DL	0.1%	8.4	9.3	17.7	202.5	44.0	
		1993						
$P_{60}N_0$	83.75	80.00	7.75	13.50	21.25	518	118	
$P_{90}N_0$	87.50	72.50	6.50	12.75	19.25	558*	124	
$P_{60}N_{60}$	81.25	68.67	7.75	4.75^{000}	12.50^{000}	512	118	
$P_{90}N_{60}$	91.25	72.50	6.50	5.25 ⁰⁰⁰	11.75^{000}	401^{000}	94^{000}	
	DL 5	5%	2.1	1.9	3.1	39.5	9.0	
	DL 1	%	3.1	2.8	4.5	56.8	12.9	
	DL 0	0.1%	4.5	4.2	6.6	83.6	19.0	
		1994						
$P_{60}N_0$	60.00	80.00	8.25	14.50	22.75	539	119	
$P_{90}N_{0}$	62.50	82.50	10.00*	12.75	22.75	582	129	

CORNELIA LUPU AND GHEORGHE LUPU: INFLUENCE OF FERTILIZATION AND BACTERIZATION ON SOYBEAN PRODUCTION AND BIOLOGICAL PECULIARITIES

$P_{60}N_{60}$	71.25	77.50	7.25	7.25^{000}	14.50^{000}	533	119
$P_{90}N_{60}$	67.50	82.50	7.25	8.00^{000}	15.25^{000}	510	122
	DL	5%	1.6	2.2	2.6	46.4	10.5
	DL	1%	2.4	3.1	3.7	66.8	15.122.
	DL	0.1%	3.5	4.6	5.4	38.3	3
		1992-199	4				
$P_{60}N_{0}$	74.51	81.25	10.91	15.83	26.74	619	137
$P_{90}N_{0}$	78.33	80.83	10.75	15.91	26.66	640	143
$P_{60}N_{60}$	76.66	75.80	8.33^{00}	8.83 ⁰⁰⁰	17.16^{000}	550 ⁰⁰⁰	122^{000}
$P_{90}N_{60}$	79.16	78.33	7.58000	9.41 ⁰⁰⁰	16.99^{000}	495^{000}	117^{000}
	DL	5%	1.5	1.6	2.8	34.3	7.6
	DL	1%	2.0	2.1	3.8	46.3	10.2
	DL	0.1%	2.7	2.8	5.0	61.7	13.7

ROMANIAN AGRICULTURAL RESEARCH

						19	992	
Treatment	Frequen with not	Frequency of plants Nodosity number with nodosities (%)		ity number pe	er plant	Weight of nodosi- ties (mg/plant)		
	Axis	Branches	Axis	Branches	Axis + branches	Fresh	Dry	
Non-bacterized	66.25	62.50	11.25	8.50	19.75	431	92	
Bact. Fl. USDA 138	87.50	91.25	12.50	21.50***	34.00**	766***	171***	
Bact. Fl. USDA 110	83.75	88.75	16.25***	19.25**	35.50**	823***	185***	
Bact. Fl. USDA 136	73.75	90.00	11.50	22.00***	33.50**	751***	165***	
	LSD 5	%	2.1	5.9	8.0	74.6	16.4	
	LSD 1%	,)	3.1	8.5	11.6	107.3	23.6	
	Lsd 0.19	6	4.6	12.5	17.8	157.9	34.7	
						1 9	993	
Non-bacterized	62 50	45 00	4 75	5 50	10.25	348	81	
Bact FLUSDA 138	92 50	80.00	6 50	11 75**	18 25***	552***	198***	
Bact FL USDA 110	90.00	85.00	9 50**	8 25	17 75***	537***	120	
Bact FL USDA 136	91 25	83 75	7 75*	10.00*	17 75***	552***	129***	
Duca II. CODIT 100	LSD 59	%	25	35	33	61.8	13.9	
	LSD 1	%	3.6	5.0	4.8	88.8	20.1	
	LSD 01	%	5.3	74	71	130.7	29.5	
			0.0			19	994	
Non-bacterized	56.25	57.50	6.75	3.50	10.25	373	87	
Bact FL USDA 138	65.00	88 75	11 25**	12.00***	23 25***	641***	145***	
Bact FL USDA 110	71 25	86 25	6.50	12.00***	18.50***	572***	124***	
Bact FL USDA 136	68 75	90.00	8 25	15 00***	13 25	579***	134***	
	LSD 5	%	2.8	1.7	3.6	53.1	11.6	
	LSD 1	%	4.0	2.4	5.1	76.4	16.8	
	LSD 0.1	%	5.9	3.6	7.6	112.4	24.7	
						1992	-1994	
Non-bacterized	61.66	55.00	7.58	5.83	13.41	384	87	
Bact, Fl. USDA 138	81.66	86.66	10.08***	15.08***	25.16***	653***	148***	
Bact. Fl. USDA 110	81.66	86.66	10.75***	13.33***	24.08***	644***	144***	
Bact. Fl. USDA 136	81.25	87.91	9.16*	15.66***	24.82***	627***	140***	
	LSD 5	%	1.3	2.1	2.8	33.4	7.4	
	LSD 1	%	1.7	2.8	3.8	45.1	10.0	
	LSD 0.1	%	2.3	3.8	5.2	60.6	13.3	

Table 7. Influence of treatment with bacterial strains on frequency and mass of nodosities in soybean (Secuieni, 1992-1994)